SPEAR3 Fast Orbit Feedback and Beamline Dynamic Steering

Presented to Beam Stability Workshop, LBL 11/1/2018

Xiaobiao Huang

SLAC National Accelerator Laboratory

Outline

- Fast orbit feedback (FOFB)
- Beamline dynamic steering (BLDS)
 - Feedback
 - Manual steering
- Orbit stability in SPEAR3
 - Long term stability (seasonal and diurnal)
 - Slow orbit drift
 - Fast orbit disturbances

SPEAR3 overview

SLAC

200

Position [meters]

X. Huang, SPEAR3 Orbit Stability

Fast Orbit Feedback (FOFB) and Beamline Dynamic Steering (BLDS)

Fast orbit feedback in SPEAR3

- 57 Bergoz BPMs
- 58 horizontal correctors, 56 vertical correctors
- Operates at 4 kHz

X. Huang, SPEAR3 Orbit Stability

A. Terebilo, T. Straumann, EPAC'06

Orbit target

- Orbit target = Golden orbit + Dels
- Golden orbit: a static target downloaded to the feedback processor
 - Golden orbit is set to the BPM offset found by beam-based alignment for most BPMs.
- Dels: a dynamic component (PVs used to adjust the target on the go)

Feedback algorithm

- Feedback algorithm
 - Proportional-Integrator (PI) control for the eigen-modes of orbit response matrix

$$R = USV^T \qquad \Delta \theta = VS^{-1}U^T \Delta x$$

- Feedback processor computes $(S^{-1}U^T)\Delta x$ and send the results to the power supply processors.
- PI coefficients are adjusted for each mode. All P-coefficients are zero.

Orbit motion seen by Bergoz BPM in 4kHz mode

X. Huang, SPEAR3 Orbit Stability

Beamline dynamic steering (BLDS)

- The FOFB Dels allow fast adjustment of the orbit target.
- BLDS adjust the Dels using beamline photon BPMs.

Adjust orbit target for ID beamline

Adjust orbit target for a dipole beamline

• Feedback algorithm

- Originally BLDS adjust the Dels once every minute to correct photon BPM error (A. Terebilo)
- In 2010 the BLDS was updated to use a PI feedback loop which update the orbit target every second.

- The PI gains for each beamline is adjusted to optimize performance.
- Step response after tune-up

An initial 100 μm eBPM step error for all beamlines

Photon beam stability improvement with BLDS PI loop

Photon beam w/ or w/o BLDS (July 2018 Data)

10 10 **BLDS** On **BLDS Off** 5 5 pBPM (um) pBPM (um) 0 0 **BL01** -5 -5 **BL01** BL02 **BL02 BL06** BL06 **BL08** -10 -10 **BL08 BL10 BL10 BL14 BL14** -15 -15 500 1000 1500 500 1000 0 1500 0 time (s) Integrated power spectrum density time (s) 10^{2} 4 **BLDS Off** 10⁰ BLDS On 3 int. PSD [μm^2] rms (ا*س*) م ⁻² 10⁻² BL01 BL02 10^{-4} 1 BL06 **BL08** Solid: BLDS Off **BL10** 0 10⁻⁶ Dashed: BLDS On **BL14** BL02 **BL08 BL01 BL06 BL10 BL14** 10⁻³ 10⁻² 10^{-1} Frequency [Hz] X. Huang, SPEAR3 Orbit Stability

Manual Steering for Beamlines not in BLDS

- Manual steering is needed at times at user requests.
- A steering Matlab GUI was developed for the purpose
 - The GUI changes Dels and let FOFB do the steering

Beamline Manual Steering		
	BL 4	Exit
Select Beamline BL 1 BL 2 BL 4 BL 5 BL 6 BL 7 BL 8 BL 9 BL 10 RI 11 Total A	ane Choose Type Vertical Horizontal OPosition Steer Ingle (urad, from initial):	Step (urad) 10 10 Total Position (um, from initial): 0
Save Dels (Memory)	Save Dels to File	Restore to initial
Restore to saved	Restore Dels from File	

SLAO

SPEAR3 orbit stability on different time scales

Seasonal ring size variation

X. Huang, SPEAR3 Orbit Stability

Diurnal variation on ring circumference

SLAC

Orbit shift corrected by corrector magnets for a year

Orbit is corrected toward the target by the Fast Orbit Feedback (FOFB).

Orbit shift calculated with history data of corrector magnets using orbit response matrix.

X. Huang, SPEAR3 Orbit Stability

Horizontal orbit drift as seen by BPMs over 8 days

SLAC

X. Huang, SPEAR3 Orbit Stability

Vertical orbit drift as seen by BPMs over 8 days

Orbit drift over 4 hrs (high resolution, 1 sec interval)

Horizontal orbit is well under control except there is some drift in the 9S area.

SLAC

Orbit rms **X = 0.1 um**

x BPM

y BPM

40

50

30

BPM

60

Vertical orbit variation over 4 hrs

SLAC

Vertical orbit changes are due to beamline dynamic steering except small

Orbit rms **Y** = 0.05 um at BPMs not

Orbit motion corrected by FOFB

X. Huang, SPEAR3 Orbit Stability

Turn-by-turn (1.28 MHz) BPM data (Echotek)

Bunch-by-bunch stability data

Summary

- Orbit control is at 0.1 um rms at 1 Hz level, except in the 9S area.
- BLDS stabilizes photon beam (measured by pBPM) to below 1 um rms.
 - Vertical eBPM target changes by up to 15 um daily due to BLDS.
- Slow orbit drift (diurnal and seasonal) corrected by the orbit feedback are mostly caused by ground motion that is driven by ground temperature.
 - Seasonal ground temperature varies by 7°C, circumference by 2.2 mm, corrected X drift up to 6-7 mm, Y drift 0.8 mm.
 - Diurnal ground temperature (near surface) varies by ~0.5°C, circumference varies 0.025 mm, corrected X drift up to 0.5 mm, Y drift 0.1 mm.
- Below 200 Hz, the rms orbit noise is about 4 um (x and y) at source points.
 - There is no vertical noise source between 200 Hz and 100 kHz.
 - The horizontal noise from 2 to 10 kHz is 3 um for ID beamlines and 12 um for dipole beamlines.
- With BxB feedback, beam is stable above 1.3 MHz